You are hereentropie, kvantová optika, interference, difrakce, koherence, nelineární optika, optické vlnovody, experiment, nanotechnologie, akustika, homepage, exkurze, přednáška, aplikovaná fyzika, doktorandi, bakaláři, magistři, laboratoře, doporučené schéma, rcptm, projekt, odkazy, diplomky, přístrojová fyzika, bartoněk, mašláň, kubínek, heřmánek, machala, pechoušek, rössler, projekty, badatel, kaleidoskop, nanocentrum, loga, rozhovor, nature, optika, kvantová, KLM, Knill-Laflamme-Milbourne, exploratorium, AFHIT, rcptm-edu, mössbauer, bet, KA5, KA9, KA1, KA2, KA3, KA4, KA6, KA7, KA8, AF, dizertace, KEF, hradlo, kvantová fyzika, kvantové zpracování informace, didaktika fyziky

entropie, kvantová optika, interference, difrakce, koherence, nelineární optika, optické vlnovody, experiment, nanotechnologie, akustika, homepage, exkurze, přednáška, aplikovaná fyzika, doktorandi, bakaláři, magistři, laboratoře, doporučené schéma, rcptm, projekt, odkazy, diplomky, přístrojová fyzika, bartoněk, mašláň, kubínek, heřmánek, machala, pechoušek, rössler, projekty, badatel, kaleidoskop, nanocentrum, loga, rozhovor, nature, optika, kvantová, KLM, Knill-Laflamme-Milbourne, exploratorium, AFHIT, rcptm-edu, mössbauer, bet, KA5, KA9, KA1, KA2, KA3, KA4, KA6, KA7, KA8, AF, dizertace, KEF, hradlo, kvantová fyzika, kvantové zpracování informace, didaktika fyziky


Studijní obor Nanotechnologie sticky icon

V souvislosti s technickým pokrokem dochází v současnosti k rozvoji řady sofistikovaných vědeckých oblastí. Jednou z nich jsou nanotechnologie, vědy o chování, vlastnostech a vytváření struktur s rozměry blížícími se velikosti atomů. K jejich rozvoji dochází zvláště proto, že se očekávají velmi významné aplikace takových struktur v průmyslu všeho druhu, v lékařství, i jinde.

Informatika 1 sticky icon

Course: Computer Science 1 (Computer Structure)

Department/Abbreviation: KEF/INF1

Year: 2016 2017

Guarantee: 'doc. Ing. Luděk Bartoněk, Ph.D.'

Annotation:

  • Displaying of information in computer systems, digital systems, fixed radix systems, basic codes used in computational technique

    Course review:
    1. Viewing information in computer systems . Number systems , polyadické system , the basic meaning of the codes codes used in computers. ( hexadecimal (8421 ), BCD, Gray code, control codes), information security in computing systems (parity, safety - Hamming codes). Character encoding and stored in a memory 2. Fundamentals of mathematical logic in terms of creation log. networks.(Boolean algebra, minimization of normal forms, Karnaugh method) simplification of Boolean functions, a complete system of logical functions, logical operators. 3. Basic logic gates and circuits in computer technology (flip-flops combinational, sequential flip- flops, registers, encoders, decoders, comparators, registers, counters, multiplexers. 4. Basic arithmetic and logical binary operations (addition, subtraction, multiplication and division in computer systems) controller functions. (parallel, serial adder ). 5. Computer memory (RAM, solid state memory types used in microcomputers). External computer memory types, applications. (magnetic memory, optical memory, disk arrays, backup devices) principle of data storage media. 6. Ways of cooperation of the computer. External, internal bus microcomputer breakdown by function , characteristics. 7. The general principle of computer functions (Von Neumann architecture), the base of microcomputers, graphics adapter, keyboard, standard in/out. interface BIOS - Setup). The scheme of universal microprocessor instruction set, the distribution of microprocessors 8. I/O interface - peripherals (monitor, keyboard, mouse, tablet, light pen, scanner, printers, plotters) way of creating characters, breakdown by functions, types and principles of operation , division by construction. 9. AD/DA converters as computer peripherals (parallel, successive approximation, dual saw progress and integration circuit). 10th Computer networks , network technical resources , topology , linking local area networks

Modelování a simulace sticky icon

Course: Modeling and Simulation

Department/Abbreviation: KEF/MOSI

Year: 2016 2017

Guarantee: 'doc. Ing. Luděk Bartoněk, Ph.D.'

Annotation: The course topics are focused on the methods and tools of modeling and simulation of real and designed continuous and digital systems by means of analog and digital computers.

>

Course review:
1. Introduction - concepts (identification, simulation) 2. Experiment (planning, individuality, versatility, verification, experimental errors) 3. System (inputs , outputs, state, state variables, feedback) 4. Mathematically model (derivation, integration, delay) 5. Modeling of systems (abstract simulation model) 6. Basic concepts of systems theory (element, characterization, classification, continuity, confidentiality) 7. The basic principle of analog modeling (analog display, basic linear operating elements and units the simplest solution of differential equations) 8. Digital computer (numerical integration, Euler's method, the accuracy of numerical solutions) 9. Modeling of random events (methods of generating random variables, characteristics) 10.Basic concepts and techniques for modeling and simulation of digital systems ( Diagnosis of logic circuits, modeling faults). 11.Example of a computer neural network model of the "back-propagation" (back-propagation)

Základy nauky o materiálu 2 sticky icon

Course: Materials Science Basics 2

Department/Abbreviation: SLO/ZNM2

Year: 2016 2017

Guarantee: 'RNDr. Petr Schovánek'

Annotation: Gain an overview about technical metal and non-metal materials (including modern forms) and technologies of their production.

Course review:
Traditional technologies of technical materials production (iron and its alloys, alumina, glass) Non-ferrous metals and alloys (properties, applications, notationa) Sintered metal materials Non-metal technical materials - plastics - glass - ceramics Composites Crystalline materials (single and polycrystals) Single crystals production Intelligent materials

Fotonické nanostruktury 2 sticky icon

Course: Photonic Nanostructures 2

Department/Abbreviation: SLO/BFN2

Year: 2016 2017

Guarantee: 'Ing. Jaromír Křepelka, CSc.', 'doc. RNDr. Jan Peřina, Ph.D.'

Annotation: The aim is to acquire basic knowledge about nonlinear (parametric) processes and their application for a design of photonic structures, especially nonlinear layered structures understanding their quantum statistical effects.

Course review:
- Nonlinear polarization and description of nonlinear parametric processes, the second harmonics and subharmonics, Raman and Brillouin scattering - Various types of photonic nanostructures, nonlinear effects connected with surface states - Methods of description of nonlinear phenomena in the structures with significantly localized optical field, classical and quantum description - Spontaneous descending frequency conversion in nonlinear layered periodically-pole and waveguide structures, generation of photon pairs, quantum linkage of photon pairs, selected application of photon pairs - Statistical properties of light, generation of squeezed light in modern photonic structures, eigenmodes with regard to squeezing of quantum fluctuations, distributed feedback and conditions for maximum enhancement of nonlinear interaction - Photopulse statistics in spontaneous and stimulated descending frequency conversion

Laserové technologie v praxi 2 sticky icon

Course: Laser technologies in practice 2

Department/Abbreviation: SLO/LTP2

Year: 2016 2017

Guarantee: 'RNDr. Hana Chmelíčková'

Annotation: To inform students about laser role as the material processing tool by means both teoretical lectures and practic experiments in laser laboratory.

Course review:
1. Clasification of laser technologies: cutting, drilling, welding and surface treatment, processing parameters overview, suitable laser types 2. Temperature fields modeling in treated materials 3. Industrial laser system construction and its regulation, KLS 264-102 working parameters 4. Laser cutting 5. Laser welding 6. Laser surface treatment 7. Treated samples displaying (metalographic analyze,surface roughness measurement) 8. Laser industrial system safety precautions

Fyzika pevných látek sticky icon

Course: Solid State Physics

Department/Abbreviation: SLO/PL

Year: 2016 2017

Guarantee: 'doc. Mgr. Jan Soubusta, Ph.D.'

Annotation: Brief introduction to solid state physics. Starting point is the description of the geometry of different crystals. Regular arrangement permits to use energy band model and elementary excitations as phonons, plazmons or excitons.

Course review:
1. Spatial configuration of a crystal, crystal lattice, primitive cell. 2. Crystal diffraction, reciprocal lattice, Bragg diffraction law, Brillouin zone. 3. Crystal bonding, ionic crystals, covalent crystals, metals, crystals of inert gases. 4. Lattice vibrations, acoustical, optical phonons, dispersion relations, thermal properties. 5. Metals, Fermi gas of free electrons, thermal and electrical properties. 6. Energy bands, Bloch theorem, Bloch functions, central equation. 7. Semiconductors, dispersion relations of real materials (Si, Ge, GaAs). 8. Fermi surfaces in metals, nearly free electron approximation, tight binding method. 9. Quasiparticles, plasmons, polaritons, excitons. 10. Advanced topics, superconductivity, electric and magnetic properties.

Učebnice (PDF, 14 MiB)

Úvod do experimentální fyziky vysokých energií sticky icon

Course: Introduction into Exp. High En. Physics

Department/Abbreviation: SLO/EFVE

Year: 2016 2017

Guarantee: 'prof. Jan Řídký, DrSc.'

Annotation: - Introduction to standard model of elementary particles - Types of experiments in the physics of elementary particles - Detection methods - Types of detection measuring devices - Evaluation of the measurement: elements from the probability calculus, Monte Carlo method - Present applications in the world

Course review:
1. "Bricks and mortar, our world is built from": - Fundamental discoverier (electron, nucleus, neutron, positron, muon,). - Paricle classification. - Contemporary state of our knowledge - basic pebbles of matter and their interactions. - Partons, deeply non-elastic scattering. - Standard model. - So far un-answered questions. 2. Interaction of partices with medium: - Passage of charged particles throug the medium in dependence of their energy. - Losses due to ionisation, radiation, Čerenkov radiation, transient radiation, multiple scattering. - Electromagnetic and hadron cascades (showers). 3. Detectors: - Particle detection methods, selected types of detectors: scintillators, Čerenkov detectors, track detectors, calorimeters. 4. Particle accelerators: - Principles of accelerating, utilized devices, linear and circular accelerators, fixed target and counter propagating beams. 5. Big temporary and future experiments on the accelerators: - Experiments on LEP and Tevatron, the most important results.

Virtuální instrumentace v experimentech sticky icon

Course: Virtual Instrumentation in Nucl. Physics

Department/Abbreviation: KEF/VIJF

Year: 2016 2017

Guarantee: 'doc. RNDr. Jiří Pechoušek, Ph.D.'

Annotation: During lessons, students will reach knowledge about the principles of digital signal processing in nuclear physics experiments. Practically will be demonstrated methods of analyzing the signals from detectors, recently used in the research.

Course review:
1. Principles of the virtual instrumentation - usage of the LabVIEW, high-performance DAQ systems application, developing of the real-time systems with RTOS (PXI, CompactRIO, FPGA). 2. Synchronization and triggering techniques - signal processing synchronization and signal generation, analog and digital trigger types, how to start measurements. 3. Detector signal processing - types of the detectors (basic characteristics, output signals), digital signal processing, DSP techniques for acquiring/shaping/analysis of impulses, spectrometer dead-time optimization. 4. Amplitude and time signal analysis - how to measure SCA and MCA spectra, methods for impulses pile-up rejection and correction, measurement of the photon/particle time-of-flight (TOF). 5. Design of the Mössbauer spectrometer in VI - principles of the DAQ in MS, synchronization for generation of the source velocity signal and detector signal analysis, data accumulation, physical principles of the Mossbauer effect. 6. Coincidence methods - principles of the coincidence/anticoincidence measurements systems, DSP techniques for TOF determination, how to measure lifetime of the excited nuclear states, design of the time differential Mössbauer spectrometer (TDMS). 7. Distributed nuclear experiments - VI the world experiments.

 

SkriptaUčební text (PDF 6,6 MiB)

Přihláška projektuVzorové úlohy (PDF 13 MiB)

Proseminář z matematiky pro fyziky 1 sticky icon

Course: Proseminar in Mathemat. for Physicists 1

Department/Abbreviation: SLO/SMF1

Year: 2016 2017

Guarantee: 'RNDr. Pavel Horváth, Ph.D.'

Annotation: Acquire the basic knowledge of mathematical analysis focused on physics applications.

Course review:
1. Mathematical logic, Mathematical language. 2. Sets, functions. 3. Real numbers. 4. Complex numbers. 5. Combinatorics and fundamentals of statistics. 6. Sequences, limits of sequences, infinite series. 7. Functions - real functions of a single real variable: The basic notions and properties of functions. 8. Elementary functions: Power, exponential, logarithmic, trigonometric and cyclometric functions. 9. Limit and continuity of a function. 10. Fundamentals of differential calculus: Derivative and its geometrical and physical meanings, differential, determination of functions properties. 11. Use of the software MATHEMATICA for selected themes - exercises.