You are hereKEF/AJF, APEL, ELMEA, EMG, FP1, FP2, FP3, FP5, MFT, MMM, PEL, TMN, TSFN, APNA1, APNA2, FZNA1, FZNA2, BFZN, BMAG, FYB2, FYB1, EXMB1, LPT2, ZANAN, TSII1, TSII2, UAA, ČMS1, MBAS, BLP3, BLP1, PELMA, BLP2, BNNE

KEF/AJF, APEL, ELMEA, EMG, FP1, FP2, FP3, FP5, MFT, MMM, PEL, TMN, TSFN, APNA1, APNA2, FZNA1, FZNA2, BFZN, BMAG, FYB2, FYB1, EXMB1, LPT2, ZANAN, TSII1, TSII2, UAA, ČMS1, MBAS, BLP3, BLP1, PELMA, BLP2, BNNE


Letní škola Physics at Nanoscale 2011

Od 30. května do 4. června 2011 proběhne Mezinárodní letní škola Physics at Nanoscale. Akce je zajímavá především pro studenty oboru Nanotechnologie, speciálně pro studenty předmětu SLO/BNNE, pro které je povinná.

Organizace výuky PELMA

Starter kitPro výuku Praktik z elektronických měření jsou v systému STAG rezervovány 3 hodiny týdně, ale týdenní dotace jsou jen 2 hodiny. Výuka proto neprobíhá každý týden, ale je střídavě rozvržena na dvoj- nebo trojhodinové bloky, jejichž rozpis je zde uveden.

V předposledním týdnu je navíc exkurze do elektronické laboratoře do Holic.

Laboratorní praxe oboru Nanotechnologie

Studium navazujícího magisterského oboru Nanotechnologie začíná úvodním kurzem KEF/BAT, během kterého studenti, kteří projeví zájem, navštíví nanotechnologické laboratoře v Holicích a optické laboratoře na Envelopě. Během exkurzí si studenti vyberou téma či techniku, na které by chtěli založit svou diplomovou práci a vyžádají si souhlas příslušného školitele.

Průběh výuky PELMA

Doplňující informace o průběhu výuky a podmínkách pro získání kolokvia.

Průběh výuky BLP1

Laboratorní praxi ve výuce BLP1 absolvujete v termínu od 18. 11. do 19. 12. 2014 v konkrétní laboratoři dle předchozího výběru a konzultace s konkrétním vedoucím. Časový rozvrh a obsah praxe je plně v kompetenci vašeho vedoucího.

Obhajoba projektů v BLP3

Obhajoba výsledků třetího laboratorního projektu (BLP3) proběhne 19. 12. 2014 od 9 hodin, zřejmě na učebně LP-4024. Závěrečné práce ve formátu PDF zašlete do 16. 12. 2014 na email milan.vujtek@upol.cz.
Součástí obhajoby bude prezentace (v češtině) s následnou diskuzí. Doporučená délka prezentace je 15 minut.

Nanomagnetismus

Course: Nanomagnetism

Department/Abbreviation: KEF/BMAG

Year: 2019

Guarantee: 'doc. Mgr. Jiří Tuček, Ph.D.'

Annotation: Magnetické vlastnosti nanostruktur.

Course review:
1. Magnetic properties of nanostructures - introduction to magnetism of solids (magnetic moment, classical and quantum mechanics of spin), magnetic susceptibility, diamagnetism, paramagnetism, crystal field, magnetic interactions among magnetic moments (magnetic dipolar interactions, origin of exchange interactions, direct, indirect, double and anisotropic exchange interactions), ordering of magnetic moments (ferromagnetism, antiferromagnetism, ferrimagnetism, helimagnetism and spin glasses), magnetic domains and Bloch walls (domain formation, magnetization processes, observation of magnetic domains), single-domain magnetic structures (qualitative and quantitative description, Stoner-Wohlfarth model), superparamagnetism, surface and finite size effects, non-interacting and interacting systems of particles (qualitative and quantitative description, Chantrell model, Dormann-Bessais-Fiorani model, Morup model, etc.), spin canting, quantum phase transitions, thin films and multilayer systems, magnetoresistance (anisotropic, exchange and colossal magnetoresistance, quantum Hall effect). 2. "Candidates" of nanostructures - Iron oxides and perovskites. 3. Frustration and spin glasses - topographic and magnetic frustration, qualitative description, conditions for frustrations, spin glasses (randomness of magnetic interactions, amorphous magnets, detection of spin glasses). 4. Magnetooptical phenomena in nanostructures - Faraday effect, Kerr effect. 5. Spintronics - basics of spintronics, suitable materials for spintronic devices, their manufacturing and characterization, injection of spins, transfer of spins, spin polarization, magnetoelectrical devices.

Fyzikální základy nanotechnologií

Course: Physical Principles of Nanotechnology

Department/Abbreviation: KEF/BFZN

Year: 2019

Guarantee: 'doc. Mgr. Jiří Tuček, Ph.D.'

Annotation: The topics cover the phenomena and properties occuring in the nanoworld.

Course review:
1. Crystal structure of solids and their changes upon decrease in size of the (nano)material. 2. FCC nanoparticles (structural magic numbers), tetrahedrally-coupled semiconducting structures (ionic model, covalent model, Vegard law). 3. Schrödinger equation for a system of electrons and nuclei and its approximations, Bloch theorem, Bloch function, localized and delocalized electrons, localization of electrons with decrease in size of a (nano)material, hole (a quasi-particle with positive charge a positive effective mass), excitons (Mott-Wannier excitons and Frenkel excitons, Saha equation). 4. Properties of individual nanoparticles, metal nanoclusters (preparation methods, structural and electronic magic numbers, superatoms, hellium model, basics of molecular orbital theory and density functional theory (DFT)). 5. Semiconducting nanoclusters (optical properties of semiconducting nanoclusters and their change with size, regime of strong and weak confinement of the exciton, blue shift and size of semiconducting nanoclusters, change in the bandgap with the size of semiconducting clusters), photofragmentation, Coulomb explosion. 6. Clusters of inert gases (van der Waals potential, Lennard-Jones potential), non-viscous nanoclusters, Bose-Einstein condensation (qualitative description), molecular nanoclusters (molecule of water and symmetrically hydrogen-bonded water). 7. Bulk nanostructural disorder materials, mechanisms of defects evolution in grain materials, mechanical properties of disordered nanostructures (Young modulus, Hall-Petch equation, elasticity, brittleness and hardness of disordered nanostructures), nanostructural multilayered disordered materials (effect of thickness of nanolayers on hardness of the material), electrical properties of disordered nanostructural materials (conductivity and electron tunneling), nanocomposite metal nanoclusters containing glasses (optical properties and Plasmon absorption, non-linear optical phenomena - non-linear refractive index, methods of nanocomposite glasses preparation), porous silicon (luminescence, photoluminescence and phosphorescence, Jablonski diagram - qualitative description, emitting and non-emitting transtions, pore size and its effect on luminescence of silicon). 8. Nanostructural crystals: natural nanocrystals, array of nanoparticles in zeolites, lattices of nanoparticles in colloidal suspensions (principle of hard and soft repulsion, Kirkwood-Alder transition, transition between FCC and BCC ordering), photonic crystals (definition and production of photonic crystals, Maxwell equations of the photonic crystals in operator form, Helmholtz equation for magnetic and electric intensity, periodicity of relative permittivity, bands of allowed and forbidden energies, dielectric and air bands, calculation of dispersion relation for simple 1D photonic crystal, resonant chamber, frequency and size of radius of holes in 2D and 3D photonic crystal). 9. Quantum nature of the nanoworld (wave function, Schrodinger equation in one dimension, time dependent and independent Schrodinger equation, particle trapped in one dimension, linear combination of solution, expected values and two-particle wave function, reflection and tunneling through potential step, tunneling through potential barrier, particles trapped in two and three dimensions, quantum dots, two-dimensional bands and quantum wires, simple harmonic oscillator, magnetic moments). 10. Quantum consequences for the macroworld, nanosymmetry and two-atomic molecules, covalent bond and covalent antibond as pure nanophysical phenomenon, definition of exchange interaction, polar and van der Waals fluctuation forces, electric polarization of neutral atoms and molecules, dipole-dipole interactions of neutral and symmetric atoms, Casimir force, experimental setup for measurement of Casimir force, hydrogen bond. 11. Single-electron tunneling, Coulomb blocade, Coulomb staircase, superconductivity and quantum nanostructures

Mössbauerova spektroskopie

Course: Mössbauer Spectroscopy

Department/Abbreviation: KEF/MBAS

Year: 2019

Guarantee: 'prof. RNDr. Miroslav Mašláň, CSc.'

Annotation: Essence of Mössbauer effect - basic facts.

Course review:
>

  • Essence of Mössbauer effect
  • Hyperfine interactions of nuclei
  • Parameters of Mössbauer spectra (isomer shift, quadrupole splitting, magnetic splitting, quadrupole shift, form of spectral lines)
  • Basics of technique of Mössbauer measurements (detectors, transducers)
  • Mössbauer spectrometers (modulation, time and time-modulation spectrometers)
  • Mössbauer measurements at low and high temperatures and in external magnetic fields
  • Application of Mössbauer spectroscopy in chemistry
  • Application of Mössbauer spectroscopy in solid state physics, study of magnetic properties of materials
  • Application of Mössbauer spectroscopy in mineralogy

    Přednáška
    Základy Mössbauerovy spektroskopie

    (PDF 3,6 MiB)

  • Nezadržitelný vzestup astročásticové fyziky

    Společná laboratoř optiky UP a FZÚ AV ČR
    zve na přednášku Nezadržitelný vzestup astročásticové fyziky,
    kterou v rámci předmětu SLO/UAA (Úvod do astronomie a astrofyziky)
    přednese RNDr. Jiří Grygar, CSc.
    dne 1.12.2010 od 11.30 v přednáškovém sále LN51,
    4. podlaží v budově SLO UP a FZÚ AV ČR, 17. listopadu 50A.