You are hereKA5


Klíčová aktivita 5: Inovace magisterského studia Aplikované fyziky

Základy nauky o materiálu 2 sticky icon

Course: Materials Science Basics 2

Department/Abbreviation: SLO/ZNM2

Year: 2018 2019

Guarantee: 'prof. RNDr. Miroslav Hrabovský, DrSc.'

Annotation: Gain an overview about technical metal and non-metal materials (including modern forms) and technologies of their production.

Course review:
Traditional technologies of technical materials production (iron and its alloys, alumina, glass) Non-ferrous metals and alloys (properties, applications, notationa) Sintered metal materials Non-metal technical materials - plastics - glass - ceramics Composites Crystalline materials (single and polycrystals) Single crystals production Intelligent materials

Fotonické nanostruktury 2 sticky icon

Course: Photonic Nanostructures 2

Department/Abbreviation: SLO/BFN2

Year: 2018 2019

Guarantee: 'Ing. Jaromír Křepelka, CSc.', 'prof. RNDr. Jan Peřina, Ph.D.'

Annotation: The aim is to acquire basic knowledge about nonlinear (parametric) processes and their application for a design of photonic structures, especially nonlinear layered structures understanding their quantum statistical effects.

Course review:
- Nonlinear polarization and description of nonlinear parametric processes, the second harmonics and subharmonics, Raman and Brillouin scattering - Various types of photonic nanostructures, nonlinear effects connected with surface states - Methods of description of nonlinear phenomena in the structures with significantly localized optical field, classical and quantum description - Spontaneous descending frequency conversion in nonlinear layered periodically-pole and waveguide structures, generation of photon pairs, quantum linkage of photon pairs, selected application of photon pairs - Statistical properties of light, generation of squeezed light in modern photonic structures, eigenmodes with regard to squeezing of quantum fluctuations, distributed feedback and conditions for maximum enhancement of nonlinear interaction - Photopulse statistics in spontaneous and stimulated descending frequency conversion

Fyzika pevných látek sticky icon

Course: Solid State Physics

Department/Abbreviation: SLO/PL

Year: 2018 2019

Guarantee: 'doc. Mgr. Jan Soubusta, Ph.D.'

Annotation: Brief introduction to solid state physics. Starting point is the description of the geometry of different crystals. Regular arrangement permits to use energy band model and elementary excitations as phonons, plazmons or excitons.

Course review:
1. Spatial configuration of a crystal, crystal lattice, primitive cell. 2. Crystal diffraction, reciprocal lattice, Bragg diffraction law, Brillouin zone. 3. Crystal bonding, ionic crystals, covalent crystals, metals, crystals of inert gases. 4. Lattice vibrations, acoustical, optical phonons, dispersion relations, thermal properties. 5. Metals, Fermi gas of free electrons, thermal and electrical properties. 6. Energy bands, Bloch theorem, Bloch functions, central equation. 7. Semiconductors, dispersion relations of real materials (Si, Ge, GaAs). 8. Fermi surfaces in metals, nearly free electron approximation, tight binding method. 9. Quasiparticles, plasmons, polaritons, excitons. 10. Advanced topics, superconductivity, electric and magnetic properties.

Učebnice (PDF, 14 MiB)

Úvod do experimentální fyziky vysokých energií sticky icon

Course: Introduction into Exp. High En. Physics

Department/Abbreviation: SLO/EFVE

Year: 2018 2019

Guarantee: 'prof. Jan Řídký, DrSc.'

Annotation: - Introduction to standard model of elementary particles - Types of experiments in the physics of elementary particles - Detection methods - Types of detection measuring devices - Evaluation of the measurement: elements from the probability calculus, Monte Carlo method - Present applications in the world

Course review:
1. "Bricks and mortar, our world is built from": - Fundamental discoverier (electron, nucleus, neutron, positron, muon,). - Paricle classification. - Contemporary state of our knowledge - basic pebbles of matter and their interactions. - Partons, deeply non-elastic scattering. - Standard model. - So far un-answered questions. 2. Interaction of partices with medium: - Passage of charged particles throug the medium in dependence of their energy. - Losses due to ionisation, radiation, Čerenkov radiation, transient radiation, multiple scattering. - Electromagnetic and hadron cascades (showers). 3. Detectors: - Particle detection methods, selected types of detectors: scintillators, Čerenkov detectors, track detectors, calorimeters. 4. Particle accelerators: - Principles of accelerating, utilized devices, linear and circular accelerators, fixed target and counter propagating beams. 5. Big temporary and future experiments on the accelerators: - Experiments on LEP and Tevatron, the most important results.

Praktikum z experimentálních technik a měřicí metody 2 sticky icon

Course: Pract. in Exp. & Measuring Methods 2

Department/Abbreviation: SLO/PEXT2

Year: 2018 2019

Guarantee: 'prof. RNDr. Miroslav Hrabovský, DrSc.'

Annotation: The aim is to teach students some modern optical methods in practice applications.

Course review:
1st week: Introduction to the practicum, overview of the laboratory tasks, organization and formal affairs concerning the attendance of the classes and basic experimental elements in the optical experiment, work safety in the practicum and work with lasers List of topics of the practicum: ANALYSIS OF THE SURFACE OF THE MATERIALS - Measurement of shape and spatial structure of the surface of engineering components and optical elements by means of contact Taylor-Hobson TALYFORM roughness-meter - Determination of roughness of the surface of polished components by means of CASI scatterometer - Usage of mobile roughness-meter for optimization of technology of optical elements EVALUATION OF OPTICAL ELEMENTS - Optical methods for evaluation of the shape and dimension parameters of mirror surfaces, MEOPTA spherical interferometer - Mechanical measuring methods for checking of geometrical shapes of components - Optical transmission function, objective method of evaluation of quality of optical systems, EROS measuring device - Methods of measurement of reflectivity of optical surfaces and thin layers - Measurement by optical goniometer INTERFEROMETERS FOR MEASURING PURPOSES - Conditions for generation of interference phenomenon, visibility of interference fringes, measurement of deformation of the surface - Types of interferometers and their usage in measuring methods, Michelson interferometer for measurement of small shifts - Interference in white light MICROSCOPES - Microscope as a tool for measurement of small distances - Imaging of the structure of technical surfaces by means of laser confocal OLYMPUS LEXT microscope - Universal ZEISS microscope with micro-hardness tester


Elektronická měření sticky icon

Course: Electronic Measurements

Department/Abbreviation: KEF/ELMEA

Year: 2018 2019

Guarantee: 'Mgr. Milan Vůjtek, Ph.D.'

Annotation: Issues of measurements - measuring methods, devices, properties of devices, block scheme of a measuring device, electromechanical and electronic measuring devices, types of signals, capacitive, inductive and resistive coupling, electromagnetic compatibility, principles of correct measurements, basic electronic elements, components and circuits used in measurements

Course review:
* Introduction - kinds of electronical instruments, measuring methods, accuracy of measurement, uncertainities and errors * Measurement of DC and AC voltages - analog and digital instruments, micro- and milivoltmeters, LF and HF voltmeters, maxima voltmeters * Measurement of DC and AC currents - fundamentals of current measurements, analog and digital instruments, rectifiers, shunts, capacitive current dividers, current probe * Oscilloscopes - kinds, principles, measurements * Measurement of time intervals and periods - analog and digital methods, measuring of periods, nonius counter * Measurement of frequency - bridges, resonant and beat based instruments, digital methods, measurement of ratio of two frequencies * Measurement of phase - principles, digital measurements * Powermetters * Measuerement of electrical properties of components * Measurement of dynamical properties of circuits * Frequency synthesis

Jaderný rezonanční rozptyl zpracování

V níže uvedeném textu je popsána problematika zpracování dat jaderného rezonančního rozptylu.

Jaderný rezonanční rozptyl. Zpracování experimentů koherentního elastického rozptylu (PDF 886 KiB)

Jaderný rezonanční rozptyl příklady

Příklady k procvičování tématiky jaderného rezonančního rozptylu (příloha).


Jaderný rezonanční rozptyl

Níže uvedený text uvádí studenty do problematiky jaderného rezonanční rozptylu.

Jaderný rezonanční rozptyl. Mössbauerova spektroskopie pomocí synchrotronového záření (PDF 1,1 MiB)

Simulace optické filtrace využitím Fourierovy transformace

Interaktivní výuková podpora demonstrující filtraci obrazů pomocí Fourierovy transformace.

Pro zobrazení je nutné mít povolený JavaScript, nainstalovaný Wolfram CDF Player nebo aplikaci Mathematica.

Nejnovější verze některých prohlížečů (Chrome, Firefox nebo Safari) již nepodporují pluginy. Tato podpora využívá CDF plugin pro zobrazení v prohlížeči. Pokud se Vám podpora nezobrazí, použijte prohlížeč Opera nebo 32-bitový Internet Explorer nebo přímý odkaz na soubor s výukovou podporou.